
A survey on Reducing Features to Improve Bug
Prediction by Using Cos-triage Algorithm

Veena Jadhav, Prof. Vandana Gaikwad

Computer Engineering Department,
BVDUCOE Pune-43(India)

Abstract- Bugs are nothing but Software defects, present a
serious challenge for system consistency and dependability. It is
very difficult task to predict bugs. To detect the bugs from the
software bug prediction is useful way. Machine learning
classifiers have emerged newly as a way to envisage the existence
of a bug in a change made to a source code. The machine
learning classifier is first skilled on software history data and
then it is used to predict bugs. Two main drawbacks of existing
classifier-based bug prediction are insufficient accuracy for
practical use and deliberate prediction time because of a large
number of machine learned features. In this paper we have
proposed mainly two techniques cos-triage algorithm which tries
to utilize both accuracy and cost of bug prediction and feature
selection techniques which discard less important features until
optimal classification performance is reached. Reducing the
feature improve the quality of knowledge extracted and also
enhance the speed of computation.

Keywords— Reliability, Bug prediction, Machine learning,
Feature selection, Accuracy

I. INTRODUCTION

Machine learning Classifiers, when skilled on historical
software project information, it can be used to guess the
existence of a bug in an individual file-level software change,
as verified in previous work by the second and fourth
authors[1].First cos-triage algorithm is used to fixing bug and
that record is stored in historical data or in log record and then
classifier is trained on information found in historical log
record and it can be used to classify a new change as being
either buggy (predicted to have a bug) or clean (predicted to
not have a bug).
Recently, we have formed a prototype displaying server-
computed bug predictions within the Eclipse IDE [3]. A bug
prediction system must also provide highly specific
predictions. If software engineers are to faith a bug prediction
system, it must provide a small number of false changes that
are predicted to be buggy but which are very clean.[4] If large
numbers of clean changes are falsely predicted to be buggy,
developers won’t have faith in the bug prediction
Bug prediction service must also provide accurate predictions.
If engineers are to faith a bug prediction service, it must
provide very few “forged alarms,” changes that are predicted
to be pram but which really clean [16].If as well many clean
changes are incorrectly predicted to be buggy, developers will
lose trust in the bug prediction system.

Kim et al.[1] developed the former change classification bug
prediction approach and similar work done by Hata et al[2].
Which employ the extraction of “features” (in the machine
learning sense, which differs from software features) from the
history of changes made to a software project. They include
everything divided by whitespace in the code that was
included or excluded in a change. Thus, all
variables,comment words, mathematical operators, name of
methods, and programming language keywords are used as
features to instruct the SVM classifier which is present in this
paper.
Price of large feature set is extremely high. Because of
composite interactions and noise classifiers cannot handle
such a large feature set. As well as number of features
increases time also increases, rising to several seconds per
classification for tens of thousands of features, and minutes
for large project data histories. This will affects the scalability
of a bug prediction service.
This paper uses multiple feature selection techniques to
develop classifier performance. Although many classification
methods could be working, this paper focuses on the use of
cos-triage algorithm and SVM.

This paper contributes three aspects:

1. Study of multiple feature selection techniques to
classify bugs in software code changes.

2. Use of cos-triage algorithm to utilize accuracy
and cost of bug prediction.

The rest of this paper is organized as follows: In Section 2
primary steps involved in performing change classification is
presented. Also this section discuss about feature selection
techniques in more detail. Section 3 discuss prior work.
Section 4 contains system overview for proposed system.
Finally a conclusion is made in section 5.

II.CHANGE CLASSIFICATION

Following steps are concerned in performing change
classification on single project.
 Creating a Corpus:
1) Change deltas are extracting from the log records of a

project, as stored in its SCM repository.
2) For each file bug fix changes are recognized by examining

keywords in SCM change log messages.

Veena Jadhav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1023-1025

www.ijcsit.com 1023

3) The buggy and clean changes at the file level are
recognized by tracing backward in the revision log record
from bug fix changes.

4) Features are extracted from all changes, which include both
buggy and clean. All expressions in Complete source
code contains features , the lines tailored in each change
and change meta-data such as author and change time
also. Complexity metrics are calculated at this step

5)Combination of wrapper and filter methods execute to
calculate a reduced set of features.Gain Ratio, Chi-
Squared, Significance, and Relief-F feature rankers are
used by filter method. The wrapper methods are depends
on the SVM classifiers.

6) classification model is skilled by using reduced set.
7) Trained classifier is set to use. Classifier, verified whether

a new change is more similar to a buggy change or a
clean change.

A. Finding Buggy and Clean Changes
For bug prediction training data is set and used. Mining
change log records is used to discover bug introducing
changes and to recognize bug fixes. There are two approaches
we use: searching for keywords in log records such as “Set”
“Bug” or other keywords likely to emerge in a bug fix, and
searching for another references to bug.

B. Feature Extraction
Using support vector machine algorithm, a classification
model must be skilled by using buggy and clean changes
which is used to organize software changes.
Everything in the source code file divided by whitespace or a
semicolon is used as a feature which is nothing but variable
name , method name, function name, keyword, comment
word, and operator.

C. Feature Selection Techniques
To perform classification large feature sets need longer
training and prediction times, also need large amounts of
memory. Feature selection is general solution to this problem.
In which only the subset of features that are mainly useful for
making classification decisions are actually used.

D. Feature Selection Process
An iterative process of selecting incrementally less significant
sets of features is done by using Filter and wrapper methods .
This process starts by cutting the initial feature set in half
which reduces memory and processing requirements for the
rest of the process

A classification model is skilled by using the reduced feature
set.Then classifier whether a new change is more related to a
buggy change or a clean change.

III. RELATED WORK

Khoshgoftaar and Allen developed model to list modules
according to software quality factors such as future fault

density using stepwise multiregression [5],[6],[7]. Ostrand et
al. explored the top 20 percent of problematic files in a
project [11] using future fault predictors and a linear
regression model.
Totally Ordered Program Units could be transformed into a
partially ordered program list, e.g by presenting the top N% of
modules as presented by Ostrand et al. Hassan and Holt
presented a caching algorithm to calculate the set of fault-
prone modules, called the top-10 list[9] .Kim et al.presented
the bug cache algorithm to predict future faults based on
preceding fault localities [10].
Gyimothy et al. [11] presented fault classes of the Mozilla
project across several releases. With the help of decision trees
and neural networks that utilize object-oriented metrics as
features.
Hall and Holmes [12] studied six different feature selection
techniques when using the Naive Bayes and the C4.5
classifier [13]. Each dataset studied has about 100
features.Many of the feature selection techniques developed
by Hall and Holmes are used in this paper.
Song et al. [14] develop a general defect prediction
framework which contain a data preprocessor, feature
selection methods, and machine learning algorithms. They
also consider that small changes to data representation can
have a high impact on the results of feature selection and bug
prediction.
Gao et al. [15] propose several feature selection algorithms to
predict buggy software modules for a large legacy
telecommunications software service. Filter-based methods
and three subset selection search algorithms are used.

IV. SYSTEM DESCRIPTION

.
 Figure 1. System overview

Above diagram fig 1. shows general overview of the system.

Veena Jadhav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1023-1025

www.ijcsit.com 1024

 Initially user login/register into the system. It also contains
training data/raw data which maintains the logs or history.
Then cos-triage algorithm is applied on that registerd
code.Cos-triage algorithm helps us for fixing bug or defects.
Output contains some bugs. If developer wants to fix bug then
he fixes it else program ends .Then at the back end that
output with bug is used as input to support vector
machine(SVM) classifier .SVM classifier uses different
feature selection methods which is given in above
section(2)..After that by reducing the features we gets final
output without bug.SVM classifier works on trained data/raw
data which is stored in log record.

A.UML DIAGRAM
In following section we are providing use case diagram and
class diagram of system

 Fig 2.Usecase Diagram

V. CONCLUSION AND FUTURE WORK

 This paper has implemented cos-triage algorithm
which helps to exploit the cost and accuracy of bug fixing or
bug prediction. This paper has also implemented the feature
selection technique which reduces the number of features
used by a machine learning classifier for bug prediction.
 In the future, when software developers have
sophisticated bug prediction technology fixed into their
software development environment, the use of classifiers with
feature selection will allow rapid, exact, more accurate bug
predictions. Also many algorithm will come in future which
will enhance precision of bug prediction.

REFERENCES
[1] S. Kim, E. W. Jr., and Y. Zhang, “Classifying Software Changes: Clean

or Buggy?” IEEE Trans. Software Eng., vol. 34, no. 2, pp. 181–
196,2008.

[2] H. Hata, O. Mizuno, and T. Kikuno, “An Extension of Fault-prone
Filtering using Precise Training and a Dynamic Threshold,” Proc. MSR
2008, 2008.

[3] J. Madhavan and E. Whitehead Jr., “Predicting Buggy Changes Inside
an Integrated Development Environment,” Proc. OOPSLA Workshop
Eclipse Technology eXchange, 2007.

[4] A.Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C.Henri-
Gros, A. Kamsky, S. McPeak, and D.R. Engler, “A Few Billion Lines
of Code Later: Using Static Analysis to Find Bugs in the Real World,”
Comm. ACM, vol. 53, no. 2, pp. 66-75, 2010.

[5] T. Khoshgoftaar and E. Allen, “Predicting the Order of Fault-Prone
Modules in Legacy Software,” Proc. 1998 Int’l Symp. on Software
Reliability Eng., pp. 344–353, 1998.

[6] T. Khoshgoftaar and E. Allen, “Ordering Fault-Prone Software
Modules,”Software Quality J., vol. 11, no. 1, pp. 19–37, 2003.

[7] R. Kumar, S. Rai, and J. Trahan, “Neural-Network Techniques for
Software-Quality Evaluation,” Reliability and Maintainability
Symposium,1998.

[8] T. Ostrand, E. Weyuker, and R. Bell, “Predicting the Location and
Number of Faults in Large Software Systems,” IEEE Trans. Software
Eng., vol. 31, no. 4, pp. 340–355, 2005.

[9] A.Hassan and R. Holt, “The Top Ten List: Dynamic Fault
Prediction,”Proc. ICSM’05, Jan 2005.

[10] S. Kim, T. Zimmermann, E. W. Jr., and A. Zeller, “Predicting Faults
from Cached History,” Proc. ICSE 2007, pp. 489–498, 2007.

[11] T. Gyim´othy, R. Ferenc, and I. Siket, “Empirical Validation of Object-
Oriented Metrics on Open Source Software for Fault Prediction,” IEEE
Trans. Software Eng., vol. 31, no. 10, pp. 897–910, 2005.

[12] M. Hall and G. Holmes, “Benchmarking Attribute Selection Techniques
for Discrete Class Data Mining,” IEEE Trans. Knowledge and Data
Eng., vol. 15, no. 6, pp. 1437-1447, Nov./Dec. 2003.

[13] J. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann,1993.

[14] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A General Software
Defect-Proneness Prediction Framework,” IEEE Trans. Software Eng.,
vol. 37, no. 3, pp. 356-370, May/June 2011.

[15] K. Gao, T. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing Software
Metrics for Defect Prediction: An Investigation on Feature Selection
Techniques,” Software: Practice and Experience,vol. 41, no. 5, pp. 579-
606, 2011.

[16] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C.Henri-
Gros, A. Kamsky, S. McPeak, and D.R. Engler, “A FewBillion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World,”
Comm. ACM, vol. 53, no. 2, pp. 66-75, 2010.

Veena Jadhav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1023-1025

www.ijcsit.com 1025

